

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 1 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 1 of 72

A-DAS

A-DAS Interface Specification

Document Information
Document ID: A-DAS-IS-001

Version: 0.2

Originator Roger Wallace

Approval Date:

Approver: Colm Hayden

Abstract

The Anaeko Data Agility Server, A-DAS™ is a real-time data access service designed

to provide uniform and simplified data access across heterogeneous Data Sources.

The primary means of interacting with A-DAS™ is through its unique HTTP

interface. This document provides an introduction to and description of the A-DAS™

HTTP interface, including the HTTP Data Service API and the supported data and

MIME types. The Interface is approached from two distinct perspectives: 1) accessing

the A-DAS™ Services using a common Web Browser and 2) accessing the Service

programmatically using the RESTful API.

Distribution
 Anaeko

History
Version Modified By Date Description

0.2 Roger Wallace 16/02/2010 Still in Draft

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 2 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 2 of 72

Table of Contents

1 Objectives and Scope ... 4

2 References and Abbreviations ... 5
2.1 Abbreviations ... 5

3 Anaeko’s Data Agility Server – A-DAS™.. 6
3.1 Data as a Service .. 6

3.2 Unified Data access through a Uniform Interface ... 7

3.3 Data Agility and Customised Views ... 8

4 Accessing A-DAS™ in a Browser ... 9
4.1 A-DAS™ Home Page .. 9

4.2 How do I find out what Data Services are available? .. 10

4.3 How can I explore the data provided by a Service? .. 11

4.4 How can I access the data? .. 13

4.5 Can I see what Data Views are available? ... 14

4.6 How do I use a Data View? ... 15

4.7 How do I make ad-hoc Queries? ... 17

4.8 Can I get the data in different formats? ... 19

4.9 Do I have to use a Browser? .. 23

4.10 What is the status of the service? ... 25

5 A-DAS™ REST API .. 28
5.1 Hubs and Nodes ... 29

5.2 Accessing data using a View ... 31

5.2.1 Limiting the results returned ... 35

5.2.2 Requesting different Media Types .. 36

5.3 Ad-hoc Querying ... 38

5.4 Working with Views .. 40

5.4.1 Creating a View .. 41

5.4.2 Deleting a View .. 42

5.4.3 Editing a View .. 43

6 Appendix A: URL Catalogue .. 44

7 Appendix B: XML Formats .. 47
7.1 Microformats ... 47

7.1.1 <link> .. 47

7.1.2 <table> .. 50

7.1.3 <thead> ... 52

7.1.4 <tbody> ... 52

7.1.5 <th> ... 53

7.1.6 <tr> .. 55

7.1.7 <td> ... 56

7.2 Proprietary Formats ... 57

7.2.1 <response> .. 57

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 3 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 3 of 72

7.2.2 <data> ... 60

7.2.3 <metadata> .. 61

7.2.4 <properties> .. 63

7.2.5 <relatesTo> ... 64

7.2.6 <property> .. 65

8 Appendix C: Glossary .. 68
8.1.1 General Terms ... 68

8.1.2 System Specific Definitions .. 70

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 4 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 4 of 72

1 Objectives and Scope

This document is an introduction to and specification for the main HTTP Interface of

Anaeko’s Data Agility Server, A-DAS™. It introduces the key design principals of A-

DAS™ and assumes no prior experience or knowledge of Data Services or RESTful

design. The introductory sections will enable a User to navigate the A-DAS™

Interface and access data using a Web Browser while the later sections should contain

sufficient detail to enable an Engineer to program a client for A-DAS™ services.

Audience

Sections up to and including Section 4 - Accessing A-DAS™ in a Browser - are

intended for Users of the A-DAS™ Web Interface. Section 5 - A-DAS™ REST API -

and the Appendices are intended for Engineers looking to consume Data Services.

Organisation

Section 3 - Anaeko’s Data Agility Server – A-DAS™ - Introduces the key concepts

behind RESTful design and Agile Data Services. Section 4 - Accessing A-DAS™ in a

Browser – begins with the A-DAS™ Home Page and describes how to explore the A-

DAS™ Web Interface. Section 5 - A-DAS™ REST API – describes in detail the data

access API and how to access and manage Data Views programmatically. The

Appendices Appendix A: URL Catalogue and Appendix B: XML Formats

complement Section 5 with a complete reference to the A-DAS™ API. Appendix C:

Glossary defines the terms used in this document, providing the necessary background

for reader less familiar with HTTP, REST and Data Services.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 5 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 5 of 72

2 References and Abbreviations

Unless otherwise stated, the latest document version must be consulted in all cases.

1. A-DAS™ Query Language Specification
Roger Wallace, [TBC]

A-DAS-DS-0001

2. A-DAS™ Product Specification v2.0
Roger Wallace, 08-09-2009

A-DAS™-PS-0001

2.1 Abbreviations

REST Representational State Transfer

MIME Multipurpose Internet Mail Extensions

URL Uniform Resource Locator

URI Uniform Resource Identifier

JSON JavaScript Object Notation

CSV Comma Separated Values

RDF Resource Description Framework

RSS Really Simple Syndication

XSL Extensible Style-sheet Language

XSLT Extensible Style-sheet Language Transformation

AJAX Asynchronous JavaScript and XML

SQL Structured Query Language

Table 1 Abbreviations - detailed definitions are available in Appendix C: Glossary

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 6 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 6 of 72

3 Anaeko’s Data Agility Server – A-DAS™

Anaeko’s Data Agility Server, A-DAS™, has been created to solve a fundamental

integration problem, to enable data, freeing it through simple, accessible services that

scales from the individual User to Enterprise Applications.

At its core integration is about reuse, the need to communicate and share information,

to reuse resources - both data and systems. Yet existing integration solutions tend to

focus on the interfaces between systems, not the data that they contain. The hidden

cost of deploying an integration solution is often an increase in complexity; inhibiting

reuse. Data shared between the integrated systems is not freed, it is still firmly locked

within the application silos. Enterprise Architects are now realising that they cannot

build the next generation of Services and Cloud based solutions with data as a second

class citizen.

A-DAS™ focuses on the Data, on delivering the data that is needed in the format

that is expected. A-DAS™ provides an system designed from the ground up to

support reuse. With A-DAS™ there is no costly and lengthy consultation nor is there

an inflexible unified Data Model, to constrain the data to a single version of the truth.

A-DAS™ provides simple, unified access to existing sources of data through the

introduction of light touch Services and customised Data Views, specifically created

for the task at hand. A-DAS™ promotes pay-as-you-go economics for data

integration.

3.1 Data as a Service

Figure 1 Data as a Service - reduce complexity and enable data in the Enterprise

Data is a fundamental component of software systems and the business processes that

rely on them. Databases, documents, log files, reports and exports play their part in

every Office and Back-Office application and system. Yet accessing this information

is often not straightforward. The technical expertise to work with Relational

Databases and Legacy Systems may not always be available and can easily become a

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 7 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 7 of 72

bottleneck. The structure and format of the data can require cleansing, sorting and

reformatting using labour intensive processes that are often ad-hoc and difficult to

reproduce, in a systematic and reliable manner.

By promoting Data as a Service A-DAS™ acts as an enabler; it removes the barriers

for use and re-use, eliminating complex manual processes and opens up data access to

the individuals and applications that need it.

3.2 Unified Data access through a Uniform Interface

A-DAS™ Services connect to underlying Data Sources and provide access to the data

through a simple, uniform HTTP Service interface, unique to A-DAS™. The

interface is designed to take advantage of the key unifying aspects of the Web: the

power and ubiquity of the URL and the flexibility of Media Type negotiation built

into the HTTP protocol.

To A-DAS™ every Resource, Data Model and Query is identified and accessed

through a unique URL that can be reused, shared and embedded across countless

applications. Consumers of A-DAS™ Services can include in their requests a

preferred data format that A-DAS™ will honour. If the calling application asks for

data served as XML then that is what A-DAS™ serves, if an Excel spreadsheet is

more appropriate then A-DAS™ responds with a spreadsheet. The same URL can be

used to present Office Word Documents to End Users, serve HTML to Web Browsers

and custom XML and binary formats to applications. A-DAS™ removes the

complexity of accessing data by meeting the expectations of the Data Consumer.

Figure 2 Access data in multiple formats from the same Uniform interface

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 8 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 8 of 72

Unlike traditional SOAP Web Services, A-DAS™ Services leverage the principles of

the Web, the ubiquity of the URL. This enables them to interact with the broadest

range of clients possible, opening up simple data access to non-technical End Users

using Office applications and yet with the ability to scale to very large volume request

from multiple complex systems and applications, requiring custom view of the data

and custom formats.

3.3 Data Agility and Customised Views

[TO BE COMPLETED]

“There is no Global Model. Rapid change is unavoidable and a System that
cannot adapt is just another part of the integration problem.”

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 9 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 9 of 72

4 Accessing A-DAS™ in a Browser

4.1 A-DAS™ Home Page

A-DAS™ services provide a standard point of entry for Service discovery. Viewed in

a Web Browser this is the service’s Home Page. The Home Page provides some

configuration metadata but it essentially a starting point for following links and

exploring the service capabilities. Note that by convention the Service’s Home Page is

always at the root URL, for example the Anaeko sandbox service Home Page is:

http://sandbox.anaeko.com:7007/.

Figure 3 A-DAS Home Page, also known as the Service Context (view on-line)

As the primary role of the A-DAS™ Home Page is Service discovery it must at a

minimum provide the URLs for accessing the following key Service Resources:

• The available Data Model, through the Service’s Metadata Catalogue

• The available Data Views, stored in the Service’s View Catalogue

• The Service Status and system reports

• The address to send ad-hoc Queries.

All A-DAS™ services follow the same convention for these key service URLS.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 10 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 10 of 72

Figure 4 The default A-DAS™ URL hierachy is a strict convention

From the example Home Page in Figure 3 it is possible to navigate the sandbox

service with no prior knowledge of its capabilities. The available Data Model can be

found at http://sandbox.anaeko.com:8005/crm, the catalogue of Data Views can be

found at http://sandbox.anaeko.com:8005/views. Details statistics and reports on the

state of the service are available at http://sandbox.anaeko.com:8005/status. For

more complex, ad-hoc service interactions the address of the Service’s Query URL is:

http://sandbox.anaeko.com:8005/query.

For convenience the Web Browser interface to A-DAS™ includes shortcuts to these

resources at the top right hand corner of most pages.

Figure 5 The key A-DAS™ resource can be accessed from the shortcut menu on most
pages

4.2 How do I find out what Data Services are available?

A-DAS™ is a peer-to-peer Data Federation service. It provides stand-alone service

access to underlying Data Sources over a simple RESTful HTTP interface but it also

provides automatic cooperative querying across a loosely coupled federation of A-

DAS™ services. A-DAS™ services grouped together in a peer-to-peer network of

services are known as Nodes in a Data Federation. To simplify the management of a

Data Federation one of the Nodes is designated as the Federation’s Hub Service. By

convention the Hub Service is usually available on port 7007, as is the case for the

sandbox Hub Service at http://sandbox.anaeko.com:7007 .

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 11 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 11 of 72

To explore the available Data Services the best place to start is the Hub Service’s

Home Page (see section 4.1). Although it is not mandatory, by default the Hub

Service will be hosted on a server that has less restrictive access control. This enables

the Hub Service to act as a gateway to the data, where direct access to data is not

possible or simply not desirable.

Figure 6 The Hub Service's Catalogue, linking to the available A-DAS™ Services (view
on-line)

Like other A-DAS™ Services there will be a link to the Hub’s Metadata Catalogue on

the Hub Service’s Home Page. Unlike other A-DAS™ service, which provide service

access to underlying Data Sources, the Hub Service’s Data Sources are the other A-

DAS™ Nodes in the federation. Follow the Metadata Catalogue link to view the

available A-DAS™ services, as illustrated in Figure 6.

The status of the available A-DAS™ services is clearly indicated as either [available]

or [offline] and a link to the Service’s Home Page is provided. It is also possible to

jump directly to the Metadata Catalogue of the Service, the Catalogue of Data Views

and the Service’s Status Reports.

4.3 How can I explore the data provided by a Service?

Starting from either the Hub Service catalogue (Figure 6) or the Service Home Page

(Figure 3) select the link for the Metadata Catalogue. This is the starting point for

discovering the Data Model that an A-DAS™ service provides.

Each individual Service in a federation is typically serving a specific logical group of

data. By convention the logical name of this group is the name of the A-DAS™

service and the name of the Metadata Catalogue. From Figure 6 we can see that one

of the services in the sandbox is providing access to “email” data, following the

naming and URL convention used by A-DAS™ we can infer that the Metadata

Catalogue for this Service is: http://sandbox.anaeko.com:8001/email

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 12 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 12 of 72

Figure 7 Use the A-DAS™ Metadata Catalogue to discover what data is available (view
on-line)

Figure 7 shows the Metadata Catalogue of the sandbox “email” Service, which

happens to provide access to a helpdesks email logs. From the screenshot we see that

there are two options available; one for data relating to outgoing mail

(http://sandbox.anaeko.com:8001/email/sent) and another for data relating to

incoming mail (http://sandbox.anaeko.com:8001/email/received). By following

these links we can drill down into the structure of the data sets and discover details

such as:

• What fields make up an email log?

• What types of data do the logs contain, Dates and Strings?

• What data can be queried?

• What size is the data set?

• What parameters can be used to search/filter the data?

If we follow the received email link we can see an example of the details structural

and descriptive information available, Figure 8.

The level to which it is possible to drill down into the Data Model depends on the

nature and structure of the underlying Data Source. For example a relational database

can be explored from the level of the Schema down to the properties and metadata of

individual Columns in a Table.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 13 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 13 of 72

Figure 8 A-DAS™ provides self-describing metadata (view on-line)

4.4 How can I access the data?

The easiest, and recommend, way to access the data provided by A-DAS™ Services

is to use pre-defined Data Views but it is also possible to perform more advanced ad-

hoc querying of data using the Query interface.

Accessing A-DAS™ services using ad-hoc queries is a powerful but advanced

capability, requiring some experience with constructing SQL-like queries. A more

typical User experience of A-DAS™ centres on the access, sharing and re-use of a

number of pre-defined Data Views. A-DAS™ enables advanced, and authorised,

users to create and test Queries and then store these as customised views of the data,

enabling simplified, direct and repeated access. This is analogous to a Relational

Database View - although accessing an A-DAS™ View is considerably easier.

Data can be queried from any Service, with the appropriate permission, and can be

sourced from multiple cooperating Services in a single query. Entries in the Metadata

Catalogue of A-DAS™ Services which are marked as “queryable” (Figure 8) can be

requested as part of an ad-hoc query. Similarly any entry in the catalogue that is

marked as a “Filter For” another entry can be used to search and filter data. Data can

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 14 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 14 of 72

be combined and merged from single data services or across multiple A-DAS™

services and Data Sources.

4.5 Can I see what Data Views are available?

To browse the Views that have already been created either select the Views link in the

top right-hand corner of the Browser or go directly to the View Catalogue of any A-

DAS™ Service by requesting the Service’s /views URL.

Figure 9 Browse the available Data Views in the View Catalogue (view on-line)

The View Catalogue of a Service lists the Views that have been defined and stored on

that particular Service instance. It is worth noting that a Service’s Views are not

restricted to accessing data sourced from the Service itself as Views are capable of

spanning, combining and merging any permitted data set in the entire A-DAS™

federation. By convention Views that target a single data set are stored with the

Service that provides access to that data, Views that span multiple data sets are stored

on the Hub Service. It is also common to control access to data by restricting

unprivileged user access to the Hub Service, in this type of deployment publicly

accessible data would be stored as Views on the Hub Service, with tighter access

controls on the individual A-DAS™ Services.

The View Catalogue Page provides links to execute the Views with a single click but

it also provides links to the definition of each of the Views. The View Definition Page

provides detailed information on the options that are available for executing the view,

including the optional and mandatory parameters that may have been defined. The

View Definition Page provides a simple way of building up a custom URL for a given

set of parameters.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 15 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 15 of 72

Figure 10 A sample View Definition, illustrating the use of mandatory parameters (view
on-line)

Each of the available sections in the View Definition Page can be expanded and

collapsed to view and hide details are required. The Definition section, hidden in

Figure 10, contains a complete copy of the Query that drives the View. The

Properties section, also hidden, contains details and links to additional metadata about

the view, including a link to any Sample data that may be available. The sample data

helps with exploring and understanding the types and structure of the data set returned

by the View – follow the sample.data link provided in the properties section of the

View Definition Page.

4.6 How do I use a Data View?

When an ad-hoc Query is promoted to a Data View it is assigned a permanent and

unique URL that can be accessed by simply following a link. Users can make on-

demand customised queries of the complete A-DAS™ catalogue by simply selecting,

sharing or embedding a URL.

Figure 10 shows an example of the View Definition Page of a Data View which

queries the utilisation and availability of customer “sites”. The unique view URL is

displayed at the top of the page: http://sandbox.anaeko.com:7007/views/site-status.

The URL of this View tells us that it is a Hub Service View. Referring back to Figure

6 we see that the utilisation and availability data sets are served by separate A-

DAS™ services, therefore this View is querying and consolidating data across two

separate Data Sources.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 16 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 16 of 72

Figure 11 All Data Views have a unique URL for direct access to the data

Below the option of viewing the results in the browser are two complementary URLs

for general purpose export. By selecting one of the alternative links the results

returned by the View can be exported in both Excel and CSV formats. These options

are the most commonly used export formats supported by A-DAS™ but they are not

the only ones. For further information on A-DAS™ support for MIMEs see Sections

4.8 Can I get the data in different formats? and 5.2.2 Requesting different Media

Types.

On closer inspection of Figure 10 we can see that this particular Data View has been

parameterised with a mandatory parameter called site. By entering one or more

values here it is possible to build up a parameterised URL that can be executed

directly, exported or copied for sharing or use in another application. If we continue

the example in Figure 10 and enter the values “Site-0001,Site-0031” as the site

parameter we will see the unique view URL automatically updates to reflect our

change.

Figure 12 Parameterised Views will automatically update their URLs

Selecting the new URL, http://sandbox.anaeko.com:7007/views/site-

status?site=Site-0001,Site-0032, will take us to the Results Page, shown in Figure

13. On the Results Page the results of a query or View are automatically paged for

conveniently viewing large data sets. The data can be sorted by selecting the table

headers and filtered by entering text in the Search box provided.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 17 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 17 of 72

Figure 13 The Results Page shows the output of both Queries and Views (view on-line)

If we had selected either the Excel or CSV options, depending on the Browser’s

settings, we would have had the option to view the output directly in Excel or save the

results locally for later use.

4.7 How do I make ad-hoc Queries?

A link to the Query Form, shown in Figure 14, is available on the Home Page of A-

DAS™ services (Figure 3), or at the top right-hand corner of most A-DAS™ pages.

Following the Query link in a Web Browser will cause the Query Form to be

displayed. This form enables ad-hoc queries to be executed and results returned in

various sample formats.

By convention it is possible to access the Query Form of any A-DAS™ service

directly by requesting the service’s /query URL.

A-DAS™ supports a proprietary XML query format that closely follows the familiar

SQL conventions of SELECT, WHERE and JOIN. The Query Form presents a template

Query as a convenient starting point from which more complex queries can be built.

The example shown in Figure 14 gives a flavour of the Query syntax but Ref1: A-

DAS™ Query Language Specification is recommended for a detailed introduction to

the A-DAS™ query language.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 18 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 18 of 72

Figure 14 The A-DAS™ Query Form, for submitting ad-hoc Queries on demand

Continuing the example of Email logs outlined in section 4.3 we can construct a

sample query that illustrates how an ad-hoc request can be made to return all email

logs sent in the last week. Copy and paste the following sample query into the Query

Form to test the example:

 <query callback="none" limit="10">
 <select>
 <target value="http://sandbox.anaeko.com:8001/email/sent" metadata="true" />
 </select>
 <where>
 <filter target="http://sandbox.anaeko.com:8001/email/sent/Timestamp"
 action=">="
 against="now(-1w)" />
 <filter target="http://sandbox.anaeko.com:8001/email/sent/Timestamp"
 action="<="
 against="now()" />
 </where>
 </query>

Figure 15 A sample Query to try out on the Anaeko sandbox

We can select a number of format options for testing this query but for the purposes of

this example we will accept the default and select the Submit Query button to see the

results as illustrated in Figure 16.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 19 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 19 of 72

Figure 16 An example of an ad-hoc A-DAS query, showing logs of mail sent in the last
week (view on-line)

4.8 Can I get the data in different formats?

There can be little doubt that the de-facto standard, in recent years, for data exchange

across heterogeneous systems is XML. In this respect A-DAS™ is a typical data

service, favouring a widely supported interoperable XML data format by default.

However, A-DAS™ provides much more than just XML – a prime example being the

HTML support that has been used in previous sections; where A-DAS™ has been

serving data direct to the Web Browser, for rendering as an HTML page.

A-DAS™ is an HTTP service with full support for the media negotiation parts of the

HTTP standard and a plug-in MIME handling system that supports key interchange

and Office formats as standard. A-DAS™ also includes drop in support for

proprietary XML formats, through XSL transformations.

Continuing the Data View example of Section 4.5 we can make a direct call to A-

DAS™ (not using a Web Browser) and see that the response is returned in the default

XML format, described in detail in Appendix B: XML Formats.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 20 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 20 of 72

 <response status="SUCCESS_OK"

 id="http://sandbox.anaeko.com:7007/query/293"

 success="true">

 <data xml.parser="com.anaeko.utils.data.xml.ArrayTableReader">

 <table footer="" title="" description="" id="table9">

 <thead>

 <th java.class="java.lang.String" id="table44/Site">Site</th>

 <th java.class="java.lang.Double"

 id="table44/average-utilisation"

 name="average-utilisation">average utilisation</th>

 <th java.class="java.lang.Double"

 id="table44/peak-utilisation"

 name="peak-utilisation">peak utilisation</th>

 <th java.class="java.lang.Double"

 id="table44/Availability">Availability</th>

 <th java.class="java.util.Date" id="table44/Month">Month</th>

 </thead>

 <tbody>

 <tr id="row0">

 <td>Site-0001</td>

 <td>0.05199</td>

 <td>0.18595</td>

 <td>99.98</td>

 <td>10-09-01</td>

 </tr>

 ...

Figure 17 By default A-DAS™ returns XML (view on-line)

Alternatively we can remain in the browser and request that raw XML is sent, rather

than the HTML rendering, by specifying the MIME type text/xml in the Request:

http://sandbox.anaeko.com:7007/views/site-summary

A key strength of the A-DAS™ Interface is that the same URL can be used to return

the data in range of formats tailored for the requesting application. In previous

examples the same URL requested by a Web Browser, capable of rendering HTML,

will result in the response was displayed as an HTML document in a fully searchable,

paged table, as illustrated in Figure 13. Similarly if asked for an alternative format

such as Excel, CSV, JSON, etc A-DAS™ will return the result as requested.

Figure 18 illustrates the same Data View response in JSON format.

 adasResponse({
 "response" : {
 "transformerType" : "com.anaeko.service.response.Response",
 "url" : "http://sandbox.anaeko.com:7007/query/296",
 "code" : "SUCCESS_OK",
 "data" : {
 "transformerType" : "com.anaeko.utils.data.Tabular",
 "properties" : {
 "footer" : "",
 "title" : "",
 "description" : ""
 },
 "columns" : [{
 "name" : "Site",
 "type" : "java.lang.String"

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 21 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 21 of 72

 }, {
 "name" : "average-utilisation",
 "type" : "java.lang.Double"
 }, {
 "name" : "peak-utilisation",
 "type" : "java.lang.Double"
 }, {
 "name" : "Availability",
 "type" : "java.lang.Double"
 }, {
 "name" : "Month",
 "type" : "java.util.Date"
 }],
 "data" : [["Site-0001", "0.05199", "0.18595", "99.98", ""],
 ["Site-0032", "0.05205", "0.98698", ...],
 ...
]
 }
 }
 })

Figure 18 Example JSON repsonse (view on-line)

Shortcuts for Excel and CSV are provided in the View Definition Page, Figure 12, but

these are simply convenient links to theses common formats. As a Data Service A-

DAS™ is capable of returning any of the formats that have been installed as plug-ins

to it MIME Handling System.

A-DAS™ supports three separate mechanisms for requesting a specific format. This

offers the calling application a range of options to simplify working with A-DAS™

Services. The default mechanism is the HTTP standard for media negotiation, the

Accept header.

1. HTTP Accept

The HTTP protocol supports the use of an Accept header in client requests. This

header should list in order of preference, or by indication using a q value, the media

types supported by the client. A-DAS™ will attempt to return the preferred format but

will also inspect the alternative options in order of preference, finally returning the

default XML if none of the requested MIMEs are supported.

Media Type Example HTTP Request

Default XML

 GET /views/list-customer-sites HTTP/1.1
 Host: sandbox.anaeko.com:7007
 Accept: application/xml; charset=utf-8

MS Excel

 GET /views/list-customer-sites HTTP/1.1
 Host: sandbox.anaeko.com:7007
 Accept: application/vnd.ms-excel

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 22 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 22 of 72

CSV

 GET /views/list-customer-sites HTTP/1.1
 Host: sandbox.anaeko.com:7007
 Accept: text/csv; charset=UTF-8

JSON

 GET /views/list-customer-sites HTTP/1.1
 Host: sandbox.anaeko.com:7007
 Accept: application/json; charset=UTF-8

Crystal

Reports XML

 GET /views/list-customer-sites HTTP/1.1
 Host: sandbox.anaeko.com:7007
 Accept: application/crystal+xml

Figure 19 Example media types with specific HTTP Accept Requests

2. Common File extensions

Some key formats have well established file naming conventions, particularly on

Microsoft Windows systems. Where there is a clear standard, such as *.xls for

Microsoft Excel files, A-DAS™ will support this extension directly in the request

URL.

Media Type Example URL

Default XML http://sandbox.anaeko.com:7007/views/list-customer-sites

MS Excel http://sandbox.anaeko.com:7007/views/list-customer-sites.xls

CSV http://sandbox.anaeko.com:7007/views/list-customer-sites.csv

JSON http://sandbox.anaeko.com:7007/views/list-customer-sites.json

Crystal

Reports XML

http://sandbox.anaeko.com:7007/views/list-customer-sites.report

Figure 20 Example Media types with in-line URL support

3. http-accept query parameter

Not all HTTP capable clients provide full support for all of the HTTP Headers. Where

it is not possible or undesirable to manipulate the HTTP request directly A-DAS™

supports the ability to override the HTTP Request Accept Header, using the query

parameter: http-accept.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 23 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 23 of 72

Media Type Example URL with HTTP Accept override parameter

Default XML http://sandbox.anaeko.com:7007/views/list-customer-sites

MS Excel http://sandbox.anaeko.com:7007/views/list-customer-sites?http-

accept= application/vnd.ms-excel

CSV http://sandbox.anaeko.com:7007/views/list-customer-sites?http-

accept= text/csv

JSON http://sandbox.anaeko.com:7007/views/list-customer-sites?http-

accept=application/json

Crystal

Reports XML

http://sandbox.anaeko.com:7007/views/list-customer-sites?http-

accept=application/crystal+xml

Figure 21 Example Media types with the http-accept override parameter

4.9 Do I have to use a Browser?

A-DAS™ is an HTTP data service that supports any HTTP capable client. In practice

the most commonly used End User application is likely to be a Web Browser,

however, because of ubiquity of the Web and Web URLs a surprising number of

options are available for accessing data through A-DAS™, without resorting to

programming.

In addition to the general utility and accessibility of HTTP URLs the built in support

for HTTP media type negotiation in A-DAS™, as outlined in Section 4.8, enables

direct integration with many common Office tools, including Microsoft Word and

Excel.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 24 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 24 of 72

Figure 22 Access A-DAS™ data directly from within Microsoft Word

Open any A-DAS™ View directly in MS Word and the results of the query will be

displayed in a Word Document. Similarly, open the same URL in Excel and the

results will be in spreadsheet form, ready for processing into pivot tables or Excel

graphs. By specifying CSV as the desired format most modern text editors will be

capable of opening A-DAS™ View URLs directly. The option of CSV is also the

most commonly supported import/export format for loading data into many Enterprise

applications, including Relational Databases. By providing data in the most

appropriate format, from a single unique URL and A-DAS™ view can simplify

sharing of data between individuals and applications, potentially reducing a multi-step

database ETL to a single HTTP request.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 25 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 25 of 72

Figure 23 Access A-DAS™ data without leaving Microsoft Excel

4.10 What is the status of the service?

As illustrated in Figure 6 the Hub Service can provide a simple available/offline status

indicator for the configured A-DAS™ Services. However, a much more detailed

description of the state of the Service is available on the individual Service Status

Pages. In general this can be found by following the Status link at the top right of the

Browser but it is possible to access the status directly by simply requesting the

Service’s /status URL.

The Status Page provides a collection of metrics that are accurate at the time the

request is made. These statistics include the number of queries currently being

processed, the total number of queries processed, the service uptime and many more.

Although there are many common statistics available across all A-DAS™ Services

the complete list of available statistics depends on the nature of the underlying Data

Source, with different statistics available for SOAP services, Relational Databases,

etc.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 26 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 26 of 72

Figure 24 A-DAS™ Status Page (view on-line)

In addition to the service statistics the Status Page provides links to available reports

that have been collated from key internal processes. These reports may include error

reports but will usually consist of detailed Data Source monitoring and load

information. The example in Figure 24 shows two reports; one that provides details of

a file that is being monitored for changes and another that provides detailed

information about the last data load of a CSV file.

As with the statistics the full list of reports that are available depends on the nature of

the underlying Data Source and the individual Service configuration. The load report

example in Figure 25 provides detailed information on the outcome of loading a CSV

file, called availability.csv, into the A-DAS™ service. The report includes

relevant internal log messages. From the report properties it is possible to determine

when the load occurred, how many files were loaded, the total number of rows of data

loaded and the number of rows skipped due to data quality issues. In addition to this

we can see from the log messages in Figure 25 that the CSV file was scanned and

determined to contain UTF-8 encoded text, possibly indicating that it did not originate

from a Windows PC.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 27 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 27 of 72

Figure 25 A CSV file report, with details of the file load (view on-line)

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 28 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 28 of 72

5 A-DAS™ REST API

Accessing A-DAS™ using a web browser is one facet of the A-DAS™ interface, a

user friendly way of navigating, browsing and discovering the Data Model and Data.

However, at its core A-DAS™ is a fully compliant HTTP/1.1 Data Service; it

provides unified and uniform access to heterogeneous Data Sources using the

ubiquitous HTTP protocol. The A-DAS™ interface is designed to be fully RESTful, a

key advantage over more typical SOAP services, or simple Web Service that serve

XML (sometimes called XML/HTTP or XML-RPC services).

As illustrated in Section 4 it is the HTTP compliant RESTful design that enables A-

DAS™ to serve user friendly web pages direct to the browser, or Excel files direct to

Microsoft Excel, using the same interface as the core data service API. Each web

page in Section 4 is available as a single RESTful API call to the same URL used by

the Web Browser. By default A-DAS™ serves industry standard XML but it is also

capable of responding to custom, application specific requests for Media Types, such

as JSON, CSV, HTML and many others.

The principal design goal of the A-DAS™ interface is to serve data in the format most

suitable for the client from a single HTTP request made to a reusable, multi-purpose,

URL. A deliberate effort has been made to make the A-DAS™ data service API

simple with the full capabilities of the service available over just a handful of well

structured URLs (Appendix A: URL Catalogue).

As an example open the following URL in a browser, in Microsoft Word or Excel or

even a Text Editor: http://sandbox.anaeko.com:8002/views/availability-this-

month. The ubiquity of the URL and HTTP standards make A-DAS™ Data Service

accessible in ways that are simply not possible with typical Web Services, built on

SOAP. The A-DAS™ API meets the expectations of the client and significantly

reduces the effort of consuming data.

A-DAS™ RESTful credentials include:

• Support for client requested MIME types.

• Hypermedia representations of Resources, enabling service discovery and state

transitions.

• Strict adherence to the semantics of HTTP GET, PUT, POST, DELETE and HEAD

requests.

• Idempotent GET and PUT requests are guaranteed.

• Strict use of query parameters only as Resource filters on GET requests.

• Support for proxies and other intermediaries through the HTTP cache directives

The remainder of this Section details the core service API of A-DAS™ and illustrates

how to work with Data Views and ad-hoc queries. The more advanced interactions

with the Service, such as processing the self-describing Hypermedia and how to

dynamically discover and interact with data, are also introduced.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 29 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 29 of 72

5.1 Hubs and Nodes

In its simplest configuration A-DAS™ acts as a Data Service enabler for a single

source of data. A-DAS™ sits between the consumer, a user or application, and the

underlying Data Source providing SQL like query capabilities through a simple HTTP

service.

Applications and Users can create ad-hoc queries or re-use stored and parameterised

Views onto the underlying Data Source with a full range of query capabilities

regardless of the source. The same HTTP service interface is used for applications and

users, serving XML, Excel, HTML, JSON, CSV or a proprietary format as the

requested by the consumer.

Figure 26 A-DAS™ configuration - single Data Source

The most powerful, and common, deployment configuration of A-DAS™ is where

multiple instances are configured as a cooperating federation of loosely coupled

services across a range of different Data Sources. In this type of deployment the same

simple HTTP interface is available to the consumer; the difference is that multiple

sources of data are seamlessly merged into a single Service that supports the same

SQL like query features across multiple Data Sources.

Figure 27 illustrates how a single Hub Service can be added as a central point of

access. This is the configuration used in the Anaeko sandbox deployment of A-

DAS™, where a Hub Service is deployed at http://sandbox.anaeko.com:7007 to

provide a consolidated access point to 7 separate services, details of which can be

found at http://sandbox.anaeko.com:7007/adas (also show as a screenshot in Figure

6).

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 30 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 30 of 72

Figure 27 A-DAS™ configuration - multiple Data Sources with Hub Service

The introduction of a Hub Services does not preclude the direct access of the other

Nodes in the Federation. All of the Data Services can be accessed directly, depending

on the underlying network configuration and permissions.

Figure 28 A-DAS™ configuration - cross domain/network Data Federation

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 31 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 31 of 72

5.2 Accessing data using a View

The primary purpose of the A-DAS™ Interface is to serve data to any HTTP capable

application, which given the ubiquity of HTTP and URLs opens up a huge range or

options for interacting with an A-DAS™ service. The most obvious way of accessing

A-DAS™ is using a standard Web Browser but every modern programming or

scripting language provides HTTP and URL support, as do most office applications.

The simplest and recommended approach to requesting data from A-DAS™ is to use

a pre-configured Data View. A Data View is a named, stored and optimised Query

that has been assigned a unique URL. To request the data, in real-time, from an A-

DAS™ View the consumer simply makes an HTTP GET request to its unique URL.

Figure 29 The anatomy of an A-DAS™ URL - Data View

The HTTP protocol enables the calling application to provide details of how it would

prefer the data be formatted and returned. For this reasons the specifics of the request

can effect how A-DAS™ responds. The right combination of User-Agent and

Accept headers should enable A-DAS™ to respond to the request with data in a

format suitable for the application that made the request.

If we examine (Figure 30) one of the Web Browser examples used in Section 4 we

can see that the browser identifies itself as Mozilla/5.0 and it also asks that

text/html be used as the preferred response format. It also includes a number of

alternative MIME options, including application/xml. On receiving the Web

Browser’s request to the list-customer-sites URL A-DAS™ inspects the User-

Agent and Accept headers and determines that the calling application is capable of

rendering XML using XSL transformations. Rather than render the data as HTML

itself A-DAS™ responds with XML data and an XSL header, which enables the

browser to perform the HTML rendering. The rational behind this is that the HTML

rendering is a small but significant overhead that can be offloaded to the calling

application, freeing the A-DAS™ Service to focus on serving data.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 32 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 32 of 72

Figure 30 A closer look at the Web Browser's HTTP Request

If we make the same request that the Web Browser made but we replace the Accept

header with a different MIME, or list of MIMEs, A-DAS™ will respond with a

different, appropriate format. Figure 31 shows the same request to the list-customer-

sites View made using a Telnet client.

 $telnet sandbox.anaeko.com 7007

 Trying...
 Connected to sandbox.anaeko.com.
 Escape character is '^]'.

 GET /views/list-customer-sites HTTP/1.1
 host: sandbox.anaeko.com
 Accept: text/xml

 HTTP/1.1 200 OK
 Content-Type: text/xml
 Content-Length: 37623

 <response status="SUCCESS_OK"
 id="http://sandbox.anaeko.com:7007/query/341895" success="true">
 <data xml.parser="com.anaeko.utils.data.xml.ArrayTableReader">
 <table footer="" title="" description="" id="table1">
 <thead>
 <th column.type.precision="20" column.type.name="VARC...
 <th column.type.precision="128" column.type.name="VAR...
 <th java.class="java.util.Date" id="table2/Go-Live-Da...
 <th java.class="java.lang.String" id="table2/Subnet">...
 </thead>
 <tbody>
 <tr id="row0">
 ...

Figure 31 Example Request/Response to an A-DAS™ Data View

Note that all example Request/Response headers are highlighted and that responses

have been truncated for clarity.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 33 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 33 of 72

With a range of built in MIME types and the option to plug-in custom MIME

handlers, and XSL transformations, the Accept header is the key mechanism used to

control how A-DAS™ responds. For example, a Web application might prefer to

make AJAX calls to A-DAS™ and receive JSON formatted data in response. To

achieve this we can perform the same HTTP request, used in previous examples, with

an Accept header requesting application/json.

 $telnet sandbox.anaeko.com 7007

 Trying...
 Connected to sandbox.anaeko.com.
 Escape character is '^]'.

 GET /views/list-customer-sites HTTP/1.1
 host: sandbox.anaeko.com
 Accept: application/json

 HTTP/1.1 200 OK
 Content-Type: application/json
 Content-Length: 13293

 adasResponse({
 "response" : {
 "transformerType" : "com.anaeko.service.response.Response",
 "url" : "http://sandbox.anaeko.com:7007/query/341916",
 "code" : "SUCCESS_OK",
 "data" : {
 "transformerType" : "com.anaeko.utils.data.Tabular",
 "properties" : {
 "footer" : "",
 "title" : "",
 "description" : ""
 },
 "columns" : [{
 "name" : "Site",
 "type" : "java.lang.String"
 }, {
 "name" : "Organisation",
 "type" : "java.lang.String"
 }, {
 "name" : "Go-Live-Date",
 "type" : "java.util.Date"
 }, {
 "name" : "Subnet",
 "type" : "java.lang.String"
 }],
 "data" : [["Site-0012", "Lakehurst High",
 ...

Figure 32 Example Requert/Response with an Accept header requesting JSON

On receiving the request to serve application/json A-DAS™ formats its

response to meet this requirement. Similarly we might request CSV data, a common

data exchange format, from the same URL, Figure 33.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 34 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 34 of 72

 $telnet sandbox.anaeko.com 7007

 Trying...
 Connected to sandbox.anaeko.com.
 Escape character is '^]'.

 GET /views/list-customer-sites HTTP/1.1
 host: sandbox.anaeko.com
 Accept: text/csv

 HTTP/1.1 200 OK
 Content-Type: text/csv
 Content-Length: 10118

 Site,Organisation,Go Live Date,Subnet
 Site-0012,Lakehurst High,2009-12-18 14:02:10,10.0.12.0/24
 Site-0110,Lakehurst High,2010-08-13 08:05:13,10.0.110.192/26
 Site-0144,North Southport High School,2009-10-12 09:46:10,10.0.144.0/24
 ...

Figure 33 Example Requert/Response with an Accept header requesting CSV

Or a custom XML format suitable for the Crystal Reports engine.

 $telnet sandbox.anaeko.com 7007

 Trying...
 Connected to sandbox.anaeko.com.
 Escape character is '^]'.

 GET /views/list-customer-sites HTTP/1.1
 host: sandbox.anaeko.com
 Accept: application/crystal+xml

 HTTP/1.1 200 OK
 Content-Type: application/crystal+xml
 Content-Length: 31781

 <table>
 <tr>
 <Site>Site-0012</Site>
 <Organisation>Lakehurst High</Organisation>
 <Go-Live-Date>2009-12-18T14:02:10</Go-Live-Date>
 <Subnet>10.0.12.0/24</Subnet>
 </tr>
 ...

Figure 34 Example Requert/Response with an Accept header requesting Crystal XML

As a final example, in Figure 35, we make the request using a Web Browser that does

not support XSL transformations, to illustrate that A-DAS™ honours the request for

text/html and formats the data as HTML before returning the response.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 35 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 35 of 72

Figure 35 Example of A-DAS™ data rendered as HTML for a client with limited
capabiliteis

The “Web Browser” used in Figure 35 is a console/text based browser called ELinks

and is shown as an extreme example of how data can be served in the format most

suitable for the requesting application.

In most cases it is likely that the calling application will prefer and explicitly request

one of the common data exchange formats illustrated in this section, such as the

default XML, JSON or CSV. A-DAS™ uses a plug-in MIME Handing System that

can support custom/proprietary formats with minimal effort. Text formats, such as

custom XML, can be generated dynamically by specifying an appropriate XSL file as

a MIME option using the standard HTTP extension mechanism. Complex binary

formats are supported by implementing a single Java Interface to convert the default

tabular data structure.

Internally no distinction is made between built-in MIME types, such as Excel or CSV,

and custom MIME type. This enables seamless integration of proprietary formats.

5.2.1 Limiting the results returned

A-DAS™ provides two mechanisms for limiting the results that are returned from a

View. An upper limit can be set on the number of data rows returned or by using the

server-side paging support to fetch blocks of rows as required.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 36 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 36 of 72

The limit option is specified by appending the maximum number of desired rows to

the end of the request URL, using the system parameter: limit as illustrated in

Figure 36.

 http://sandbox.anaeko.com:7007/views/list-customer-sites?limit=10

Figure 36 Request View results be limited to a maximum number of rows using the
limit query parameter

Server-side paging is possible by appending the range of, inclusive, rows that are

desired. Note that A-DAS™ results are indexed starting at row 0.

 http://sandbox.anaeko.com:7007/views/list-customer-sites?rows=0-9

Figure 37 Request View results in pages using the rows query parameter

The row option is also available as part of the standard HTTP, using the Range

header. The typical use of the HTTP Range header is to specify the range of bytes

that is desired, for example when streaming media. However, the standard allows for

arbitrary units of range and A-DAS™ supports the unit: rows.

 GET /views/list-customer-sites HTTP/1.1
 host: sandbox.anaeko.com
 Accept: text/csv
 Range: rows=20-22

 HTTP/1.1 200 OK
 Content-Range: rows 20-22/156
 Content-Type: text/csv
 Content-Length: 231

 Site,Organisation,Go Live Date,Subnet
 Site-0038,Marion Barry High School,2009-01-16 15:57:38,10.0.38.240/28
 Site-0049,Thatherton Fuels,2009-11-23 17:57:22,10.0.49.240/28
 Site-0052,Spade and Archer,2010-02-14 17:49:59,10.0.52.192/26

Figure 38 Using the HTTP Range header for server-side paging

Using the rows=n-m as a query parameter is a convenient way of specifying the

HTTP Range header, when setting it explicitly is either not possible or is

inconvenient.

5.2.2 Requesting different Media Types

A-DAS™ supports three separate mechanisms for a calling application to specify a

preferred MIME type.

1. HTTP Accept header

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 37 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 37 of 72

The primary and recommended mechanism, illustrated in the previous section, is to

use the HTTP Accept header. As part of the HTTP standards this provides the

highest level interoperability. However, not all HTTP enabled applications, tools or

libraries support customisation of HTTP headers. To support situations where

manipulating the HTTP headers is either impossible or undesirable A-DAS™

provides two additional mechanisms.

2. http-accept query parameter

When making a request to A-DAS™ the calling application can override the HTTP

Accept header by appending the query string parameter http-accept to the request

URL.

 http://.../views/list-customer-sites?http-accept=text/html

Figure 39 Request rendered HTML using the http-accept override query parameter

In the above example A-DAS™ will ignore the HTTP Accept header sent as part of

the request and return the data as rendered HTML. The http-accept query

parameters supports a single MIME type plus MIME options in the exact same format

defined for the HTTP Accept header.

http://.../views/list-customer-sites?http-accept=application/xml;charset=UTF-16

Figure 40 Request using the http-accept override with a character set MIME option

set

3. Common file extensions

Many of the common formats that are used for data exchange have well known file

extensions. Formats such as Excel are typically saved with names like *.xls or

*.xlsx and a file with a name in the form of *.csv is generally accepted to contain

CSV formatted text. A-DAS™ supports this convention for all standard MIMEs.

 http://sandbox.anaeko.com:7007/views/list-customer-sites.xls

 http://sandbox.anaeko.com:7007/views/list-customer-sites.json

 http://sandbox.anaeko.com:7007/views/list-customer-sites.csv

Figure 41 Example Requests using the file extension convention

The file extension convention is an extremely useful one when accessing A-DAS™

using common office applications as many of these applications do not provide full

HTTP support and rely on extension recognition. Older versions of Microsoft Excel

for example do not make MIME specific request, nor do they identify themselves as

Excel in the User-Agent header. Without this metadata to guide its choice of response

MIME A-DAS™ responds using the default XML format. Because the default format

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 38 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 38 of 72

uses a microformat HTML Table Excel can process the return XML seamlessly,

however, by place a .xls suffix on the URL A-DAS™ will respond with an Excel

formatted file, which will including the additional formatting and highlighting that A-

DAS™ supports.

5.3 Ad-hoc Querying

In addition to the predefined Data Views A-DAS™ provides support for ad-hoc real-

time queries. Queries are written in a proprietary XML format that blends the rules

and concepts of SQL with the URL based RESTful access of an A-DAS™ service.

The syntax of the Query XML format in detail in Ref 1: A-DAS™ Query Language

Specification. For the purposes of this document the query examples illustrated are

relatively easy to follow and can be tested on the Anaeko sandbox installation at

http://sandbox.anaeko.com/query.

Figure 42 The anatomy of the A-DAS™ - Query URL

Queries are sent to A-DAS™ by making an HTTP POST request to the Query Service

URL. The URL can be inferred for any A-DAS™ service by appending /query to

the root Service URL, as illustrated in Figure 42.

By default all ad-hoc queries are executed asynchronously, although it is also

possible to request that a query be executed synchronous, which will result in a

blocking call to the service until the results are returned – note that the syntax for

requesting a synchronous query is part of the Query definition. The results of an

asynchronous query can be forwarded to a call-back URL, provided by the calling

application, or they can be retrieved directly from the unique Query Identity URL that

is returned in response to a successful POST request to the Query Service.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 39 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 39 of 72

 POST /query HTTP/1.1
 host: sandbox.anaeko.com:8001
 Content-Type: text/xml

 <query limit="10">
 <select>
 <target value="http://sandbox.anaeko.com:8001/email/sent" metadata="true" />
 </select>
 <where>
 <filter target="http://sandbox.anaeko.com:8001/email/sent/Timestamp"
 action=">=" against="now(-1w)" />
 <filter target="http://sandbox.anaeko.com:8001/email/sent/Timestamp"
 action="<=" against="now()" />
 </where>
 </query>

 HTTP/1.1 200 OK
 Content-Type: text/plain; charset=utf-8
 Content-Length: 40

 http://sandbox.anaeko.com:8001/query/123

Figure 43 An example ad-hoc Query sent to the A-DAS™ Query URL

Figure 43 illustrates a complete Request/Response cycle for an asynchronous query,

showing how A-DAS™ responds to the request by returning the unique auto-assigned

URL. The status of the query can be checked in real-time using an HTTP GET to this

URL or the results can be fetched directly by appending /response to the unique

URL of the query: http://sandbox.anaeko.com:8001/query/123/response.

As with Data Views the results of an ad-hoc query can be fetched using server-side

paging:

 http://sandbox.anaeko.com:8001/query/123/response?rows=0-9

Figure 44 Request Ad-Hoc Query results in pages using the rows query parameter

To get the results of an asynchronous query forwarded when they are ready the calling

application must provide a call-back address. Once the query results are complete A-

DAS™ will forward them to the call-back address using an HTTP POST.

 POST /query HTTP/1.1
 host: sandbox.anaeko.com:8001
 Content-Type: text/xml

 <query limit="10" callback=”none”>
 <select>
 <target value="http://sandbox.anaeko.com:8001/email/sent" metadata="true" />
 </select>
 <where>
 <filter target="http://sandbox.anaeko.com:8001/email/sent/Timestamp"
 action=">=" against="now(-1w)" />
 <filter target="http://sandbox.anaeko.com:8001/email/sent/Timestamp"
 action="<=" against="now()" />
 </where>
 </query>

continue on following page...

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 40 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 40 of 72

 HTTP/1.1 200 OK
 Content-Type: application/xml; charset=utf-8
 Content-Length: 3346

 <response status="SUCCESS_OK" id="http://sandbox.anaeko.com:8001/query/125"

success="true">

 <data xml.parser="com.anaeko.utils.data.xml.ArrayTableReader">

 <table footer="" title="" description="" id="table6">

 <thead>

 <th java.class="java.lang.String" id="table6/Id">Id</th>

 <th java.class="java.util.Date"

id="table6/Timestamp">Timestamp</th>

 <th java.class="java.lang.String" id="table6/To">To</th>

 <th java.class="java.lang.String" id="table6/From">From</th>

 </thead>

 <tbody>

 <tr id="row0">

 <td>Fc:167:3Cf</td>

 <td>2010-03-01 12:13:14</td>

 <td>Gail.Reeves@Arcam-Corporation.Com</td>

 <td>Britney.Mclaughlin@Help-Desk.Com</td>

 </tr>

 ...

Figure 45 An example ad-hoc Query sent to the A-DAS™ Query URL synchronously

5.4 Working with Views

Although primarily used by clients to query data the A-DAS™ HTTP interface is not

limited to data access. Each A-DAS™ service provides a range of Service

Management capabilities including the option to explore, create, edit and delete Data

Views.

Section 4.5 details how a Web Browser can be used to browse and examine an A-

DAS™ View Catalogue. To create, delete and edit Views requires an HTTP client

capable of HTTP PUT and DELETE operations, more commonly found in HTTP

programming libraries and tools. Without these capabilities it is still possible to use

simple HTTP GET requests to perform complex dynamic interactions with views,

including discovery and parameter detection. Figure 46 shows the basic View URL

structure for requesting the View Catalogue and a View’s definition and details.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 41 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 41 of 72

Figure 46 Anatomy of an A-DAS™ URL - View Catalogue

Unlike the data access URLs the View Management URLs respond using a fixed

format; the A-DAS™ Metadata XML format. This is a proprietary format detailed in

Appendix B: XML Formats. Figure 47 shows an example of how the Definition of a

View might be queried to return the list of mandatory parameters defined for the

View. Two calls are show, the first requests the default XML format; the second

requests the universal name-value pair format used to define properties.

 GET /views/site-status/definition?properties=parameter%20list HTTP/1.1
 host: sandbox.anaeko.com

 HTTP/1.1 200 OK
 Content-Type: application/xml; charset=UTF-8;
 Content-Length: 214

 <?xml-stylesheet type="text/xsl" href="/file/properties.xsl"?>
 <properties>
 <property java.class="java.lang.String">
 <name>parameter list</name>
 <value>site</value>
 </property>
 </properties>

 GET /views/site-status/definition?properties=parameter%20list HTTP/1.1
 host: sandbox.anaeko.com
 Accept: application/properties

 HTTP/1.1 200 OK
 Content-Type: application/properties
 Content-Length: 20

 parameter list=site

Figure 47 Direct access to View Properties – list mandatory parameters

The View Management URLs also enable calling applications to inspect the structure

of the data that will be returned by the View, without having to call the View and

process the results. The structure and data types that are returned by a view can be

accessed by appending /metadata to the end of the unique View URL. For example,

http://sandbox.anaeko.com:7007/views/site-status/metadata will return the

structure of the results returned by the site-status View.

5.4.1 Creating a View

New views can be created on an A-DAS™ service using the REST API. A view is a

stored and optimised Query, assigned a unique URL. To convert a Query to a View

POST the Query to the View Catalogue URL /views. If the Query is valid A-DAS™

will respond with a unique URL for the newly created View. This unique URL will be

the View Catalogue URL with an assigned unique number appended, for example:

http://sandbox.anaeko.com:7007/views/47382. However, if the Query has

a unique name as part of its definition this name can also be used to identify the

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 42 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 42 of 72

View, for example http://sandbox.anaeko.com:7007/views/mail-sent-

last-week would be a valid View URL for a uniquely named Query “a-new-view”.

Note that because the name of the View can be part of a URL it is recommended that

View names are restricted safe URL characters.

 POST /views HTTP/1.1
 host: sandbox.anaeko.com:8001
 Content-Type: text/xml

 <query name=”mail-sent-last-week”>
 <select>
 <target value="http://sandbox.anaeko.com:8001/email/sent" metadata="true" />
 </select>
 <where>
 <filter target="http://sandbox.anaeko.com:8001/email/sent/Timestamp"
 action=">=" against="now(-1w)" />
 <filter target="http://sandbox.anaeko.com:8001/email/sent/Timestamp"
 action="<=" against="now()" />
 </where>
 </query>

 HTTP/1.1 200 OK
 Content-Type: text/plain; charset=utf-8
 Content-Length: 40

 http://sandbox.anaeko.com:8001/views/123

Figure 48 An example of how an ad-hoc Query is converted to an A-DAS™ View

It is worth noting the similarity between the View Create request in Figure 48and the

ad-hoc Query request in Figure 43. This is a deliberate design decision to keep the

API and small and self-consistent as possible. The exact same POST request can be

sent to the /query or the /views URL resulting in an asynchronous Query or a New

View respectively.

5.4.2 Deleting a View

A view can be deleted from a View Catalogue, assuming the appropriate permissions

are in place, by sending an HTTP DELETE request to the Views unique URL.

 DELETE /views/mail-sent-last-week HTTP/1.1
 host: sandbox.anaeko.com:8001

 HTTP/1.1 200 OK
 Content-Type: text/plain

 Deleted View: http://sandbox.anaeko.com:8001/views/123

Figure 49 An example of how an A-DAS™ View is deleted using an HTTP DELETE

In Figure 49 the View created in section on Creating a View is deleted. A-DAS™

returns the assigned unique URL of the View as confirmation.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 43 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 43 of 72

5.4.3 Editing a View

A-DAS™ supports editing of Views using the HTTP PUT operation. The HTTP

protocol definition specifies that the PUT operation is a complete replacement of the

existing resource, rather than partial edit. Partial edits might be performed using a

POST but the semantics are subtly different and POST editing is not, currently,

supported by A-DAS™. In effect editing an A-DAS™ view is similar to creating a

new View at a pre-existing unique URL, there by replacing the original View.

 PUT /views/mail-sent-last-week HTTP/1.1
 host: sandbox.anaeko.com:8001
 Content-Type: text/xml

 <query name=”mail-sent-last-week”>
 <select>
 <target value="http://sandbox.anaeko.com:8001/email/sent" metadata="true" />
 </select>
 <where>
 <filter target="http://sandbox.anaeko.com:8001/email/sent/Timestamp"
 action=">=" against="now(-4w)" />
 <filter target="http://sandbox.anaeko.com:8001/email/sent/Timestamp"
 action="<=" against="now()" />
 </where>
 </query>

 HTTP/1.1 200 OK
 Content-Type: text/plain; charset=utf-8
 Content-Length: 40

 http://sandbox.anaeko.com:8001/views/124

Figure 50 An example of how to use an HTTP PUT request to edit an A-DAS™ View

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 44 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 44 of 72

6 Appendix A: URL Catalogue

Resource /
Category

URL
Method

GET PUT POST DELETE

Service

/ Service Context 405 405 405

/?properties=name[,name...] Properties List 405 405 405

/?rel=[rel...] Linked Metadata 405 405 405

../?tag=[tag][,tag...] Linked Metadata 405 405 405

/?relatesTo=[(rel|tag)][,(rel|tag)...] Linked Metadata 405 405 405

Metadata
Catalogue

/[servicename] Metadata Catalogue Edit the metadata Edit Metadata Remove Metadata

/[servicename]?properties=name[,name...] Properties List 405
Add/Edit
Property Remove Property

/[servicename]?rel=[rel][,rel...] Linked Metadata 405 Add/Edit Link Remove Link

/[servicename]?tag=[tag][,tag...] Linked Metadata 405 Add/Edit Link Remove Link

/[servicename]?relatesTo=[(rel|tag)][,(rel|tag)...] Linked Metadata 405 Add/Edit Link Remove Link

Metadata

/[servicename]/[metadata][/metadata...] Metadata Edit the metadata Edit Metadata 405

/[servicename]/[metadata][/metadata...]?properties=name[,name...] Properties List 405
Add/Edit
Property Remove Property

/[servicename]/[metadata][/metadata...]?rel=[rel...] Linked Metadata 405 Add/Edit Link Remove Link

/[servicename]/[metadata][/metadata...]?tag=[tag][,tag...] Linked Metadata 405 Add/Edit Link Remove Link

/[servicename]/[metadata][/metadata...]?relatesTo=[(rel|tag)][,(rel|tag)...] Linked Metadata 405 Add/Edit Link Remove Link

Queries

/query Query (HTML) Form 405
Create New

Query 405

/query/[name|id] Query Details/Status 405 405 Cancel query

/query/[name|id]/response Query Results 405 405 405

/query/[name|id]/response?[rows=n-m]

Inclusive rows n to

m of Query Results 405 405 405

Continues on following page…

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 45 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 45 of 72

Resource /
Category

URL
Method

GET PUT POST DELETE

View
Catalogue

/views View Catalogue 405 Add New View 405

/views/[(name|id)]/definition View Definition 405 405 405

/views/[(name|id)]/definition?properties=name[,name...] Properties List 405
Add/Edit
Property Remove Property

/views/[(name|id)]/definition?rel=[rel...] Linked Metadata 405 Add/Edit Link Remove Link

/views/[(name|id)]/definition?tag=[tag][,tag...] Linked Metadata 405 Add/Edit Link Remove Link

/views/[(name|id)]/definition?relatesTo=[(rel|tag)][,(rel|tag)...] Linked Metadata 405 Add/Edit Link Remove Link

Views

/views/[(name|id)][?[param=value[,value]][¶m=value[,value]]] Execute View Add/Replace View Update View Remove View

/views/[(name|id)][?limit=value]

Execute View (limit
rows returned) 405 405 405

/views/[(name|id)][?http-accept=mime]

Execute View
(override http mime) 405 405 405

/views/[(name|id)][?rows=n-m]

Execute View (return
inclusive rows n to
m) 405 405 405

View
Metadata

/views/[(name|id)]/sample.data View Sample
Add/Replace
Sample Data

Update Sample
Data

Remove Sample
Data

/views/[(name|id)]/metadata View Metadata 405 405 405

/views/[(name|id)]/metadata[/metadata...]?properties=name[,name...]

View Metadata
Properties List 405

Add/Edit
Property Remove Property

Static
Resources

/file/[static-file]

Cached Static
Resource 405 405 405

/file/[static-file]?http-cache-control=no-cache

Fresh Static
Resource 405 405 405

Continues on following page…

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 46 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 46 of 72

Resource /
Category

URL
Method

GET PUT POST DELETE

Service
Statistics

/status Service Status 405
Add/Edit
Property 405

/status?properties=name[,name...] Properties List 405
Add/Edit
Property 405

/status/statistics Service Statistics 405
Add/Edit
Property 405

/status/statistics?properties=name[,name...] Properties List 405
Add/Edit
Property 405

Service
Reports

/status/reports List Reports 405 405 405

/status/reports/[name] Report 405 405 405

/status/reports/[name]?properties=name[,name...] Properties List 405 405 405

/status/reports/[name]?category=name[,name...] Filtered Logs 405 405 405

Table 2 A complete list of the supported URL Templates

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 47 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 47 of 72

7 Appendix B: XML Formats

7.1 Microformats

Where possible A-DAS™ uses existing and well-documented formats and schemas.

In particular it is common to find widely used, official or de-facto, XML standards

that meet our requirements for metadata and data transfer. To reduce the cost of

consuming A-DAS™ services, to promote interoperability, proprietary XML formats

are strongly discouraged.

7.1.1 <link>

Attributes

Name Description Required

href URL to the related resource Yes

rel The relationship between this resource and the

linked resource, e.g. this resource has an

alternative representation at the specified URL

(href) – note that this is normally shortened to

alternative

Yes

name The name of the related resource, or the name

given to this relationship

No

tags Arbitrary comma separated tags that group and

describe this link

No

rev The relationship between the linked resource and

this one, the inverse of the rel attribute

No

charset The character set used to encode the linked

resource, if it is restricted to text based MIMEs

No

type The primary MIME type of the linked resource No

id A system wide unique identity for this link No

title Arbitrary text field associated with the <link> No

Sub-Elements

Name Description Required

n/a n/a n/a

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 48 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 48 of 72

The official definition of the HTML <LINK> element can be found in the HTML 4

specification. The use of the <LINK> (or <link>) in A-DAS™ is largely equivalent

to this definition, with some minor qualifications and extensions.

The explicit intention of the <link> element is to enable two HTML Documents to

be related in addition to any references that may be part of the documents content. As

an element of HTML Metadata <link> elements only appear in the header of normal

HTML documents. The A-DAS™ use of the <link> is analogous as it is used to

define the relationship between two resources, most commonly two Metadata

resources.

A-DAS™ extends the definition of the HTML <link> element by adding two

optional attributes. The first is simply an optional name for the object of the

relationship. The second provides support for the common Web grouping mechanism

that enables arbitrary tags to be assigned to an entity for searching and grouping.

A common use of the <link> element in public web sites is as a mechanism for

defining alternative URLs for use with non-standard or specialist clients. For example,

many news web sites support RSS feeds as an alternative way of consuming the latest

news items.

 <link href="http://feeds.guardian.co.uk/theguardian/rss"
 rel="alternate"
 type="application/rss+xml"
 title="rss" />

 <link
 ref="http://newsrss.bbc.co.uk/rss/newsonline_uk_edition/front_page/rss.xml"
 rel="alternate"
 type="application/rss+xml"
 title="BBC NEWS | News Front Page" />

Figure 51 Example HTML <link> elements taken from public web sites

In the above examples, taken from http://www.theguardian.co.uk and

http://news.bbc.co.uk respectively the links relate the front page of the web site with

an alternative representation in RSS format, suitable for an RSS reader. Modern

browsers automatically detect the RSS <link> and offer the feed as an option,

usually with an appropriate icon .

The concept and purpose of the HTML <link> is complementary to the RDF

mechanism for relating two Entities together using RDF Triples. In RDF an Entity

known as Employee might be related to an Entity called Job by stating that “An

Employee has a Job”. This statement is as Binary Predicate. A Predicate is a

statement or function that is either true or false. A Binary Predicate is a statement or

function that requires two operands, usually called the Subject and the Object. In the

previous example the Subject is the Employee and the Object is the Job, and the

Predicate “has a” is either true or false for all combinations of Employee and Job. In

the example of RSS feeds and web pages the <link> element has be rephrased in the

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 49 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 49 of 72

terms of an RDF Triple by stating: “This Document has an alternative RSS

Document”.

In A-DAS™ all relationships are Binary Predicate, which enables their direct

translation to HTML <link>s. The mapping of A-DAS™ relationships to <link>

can be expressed, in pseudo code, as follows:

 Link ln = new Link;

 ln.title = relationship.assertion;
 ln.name = relationship.object.name;

 if relationship.object has tags
 for each relationship.object.tag
 ln.tags += tag;
 ln.tags += ,;

 ln.href = relationship.object.url;
 ln.rel = relationship.name;

 if relationship has an inverse
 ln.rev = relationship.inverse.name;

Figure 52 Pseudo code showing an A-DAS™ relationship mapped to an HTML <link>

Although A-DAS™ supports arbitrary relationships between resource, and different

Data Sources may require customer relationships depending on underlying Data

Model and API, there are a small number of core relationships that common across all

A-DAS™ services.

Relationship Description Inverse

Relationship

hasChild This represents the fundamental tree-

like hierarchical relationship between

metadata entities in a standard Data

Model. It is generic in that it

supports the creation of arbitrarily

complex network of entities,

adequately describing the basic

structure of XML, Relational and

Object data models.

There are many semantically

equivalent ways to express this

generic relationship e.g.

• Parent – Child

• Branch – Leaf

• Is Made Of

• Is Composed Of

childOf

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 50 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 50 of 72

Are just a few examples.

hasParameter This relationship is used to define

entities that can be used to filter data.

For example in a relational database

the rows in a table can be queried

using column values to filter the

rows returned. Or similarly the

parameters of a SOAP service are

filters on the data set returned.

parameterOf

indexes This is a specialised form of the

parent-child relationship that

expresses the connection between a

Catalogue and its contents.

indexedBy

servedBy Another specialised parent-child

relationship that defines the

relationship between a Service and

its Resource. This is generally

reserved for root service entities as

navigation from the extremities of

the hierarchy should always be

possible through the standard parent-

child and index relationships.

n/a

hasMetadataCatalogue Reserved for Service entities that

manage catalogues

n/a

hasViewCatalogue Reserved for Service entities that

manage catalogues

n/a

Table 3 Key Resource relationships in A-DAS™

7.1.2 <table>

Attributes

Name Description Required

id A system wide unique identity for this link Yes

title A display title for the data in the table No

name The name of the data set No

description A description of the contents of the table No

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 51 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 51 of 72

Sub-Elements

Name Description Required

<thead> Wrapper for the table’s columns No

<tbody> Wrapper for the table’s rows of data No

The HTML <TABLE> element is used by A-DAS™ to exchange tabular data in XML

format. An A-DAS™ XML table does not make use of the majority of attributes

associated with the standard HTML table but is still a valid <TABLE> in that can be

rendered by any HTML compliant browser.

An A-DAS™ <table> is a simplified version of and an HTML <TABLE>; the key

structural aspects are identical as A-DAS™ tables make use of the HTML sub-

elements <TH>, <TR> and <TD>, which define the columns, rows and cells of the

table respectively. However, an A-DAS™ table is a strict XML structure that does not

support the more generous parsing allowed for HTML tables.

An example of an A-DAS™ <table> is given in Figure 53:

 <table name="" title="" description="" id="table62">
 <thead>
 <th id="table62/Site">Site</th>
 <th id="table62/Contact">Contact</th>
 <th id="table62/Telephone">Telephone</th>
 <th id="table62/Email">Email</th>
 <th id="table62/Subnet">Subnet</th>
 </thead>
 <tbody>
 <tr id="row0">
 <td>Site-0000</td>
 <td>Joy Kimble</td>
 <td>07557444425</td>
 <td>joy.kimble@primatech.com</td>
 <td>10.0.0.0/26</td>
 </tr>
 ...
 </tbody>
 </table>

Figure 53 Example of a <table> element

There are no restrictions placed on the attributes allowed in the <table> element

only the id attribute is mandatory. This attribute is also the root of all Column

identities within the table, as illustrated in the example.

The <table> element must contain a <thead> sub-element if there is any data in the

table’s body or if the table’s columns have been defined. If there is data in the table

there must also be a <tbody> sub-element, to enclose the rows of data.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 52 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 52 of 72

7.1.3 <thead>

Attributes

Name Description Required

n/a n/a n/a

Sub-Elements

Name Description Required

<th> A table column No

This is a mandatory structural element, analogous to the HTML <THEAD> element,

that only exists within an enclosing <table>. It supports no attributes and can

contain only <th> sub-elements.

 <thead>
 <th id="table62/Site">Site</th>
 <th id="table62/Contact">Contact</th>
 <th id="table62/Telephone">Telephone</th>
 <th id="table62/Email">Email</th>
 <th id="table62/Subnet">Subnet</th>
 </thead>

Figure 54 Example of a <thead> element

7.1.4 <tbody>

Attributes

Name Description Required

n/a n/a n/a

Sub-Elements

Name Description Required

<tr> A row of data No

This is a mandatory structural element, analogous to the HTML <TBODY> element,

that only exists within an enclosing <table>. It supports no attributes and can

contain only <tr> sub-elements.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 53 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 53 of 72

 <tbody>
 <tr id="row0">
 <td>Site-0000</td>
 <td>Joy Kimble</td>
 <td>07557444425</td>
 <td>joy.kimble@primatech.com</td>
 <td>10.0.0.0/26</td>
 </tr>
 <tr id="row1">
 <td>Site-0001</td>
 <td>Melissa Dill</td>
 <td>02980885038</td>
 <td>melissa.dill@elbrus-global.com</td>
 <td>10.0.1.48/28</td>
 </tr>

 ...

 </tbody>

Figure 55 Example of a <tbody> element

7.1.5 <th>

Attributes

Name Description Required

id An identity String that is unique within the

enclosing <table> and is prefixed with identity of

the <table>

Yes

java.class A java class that sets boundaries on the type of data

that can be contained in the column. As all data in

the table will be serialised to text this type

indicates how the text should be converted back

into its original type.

The rules for text serialisation are defined

elsewhere.

Mappings between java types and other systems

are already well documented for numerous

programming and database systems*. For this

reason it is unnecessary and counter productive to

create a new A-DAS™ specific set of types or to

adopt an arbitrary 3
rd

 party type system such as

defined by XML Schema.

*For example, here are references to mappings from Java

types to: SQL, XML Schema, SOAP and C/C++

No

xml.parser An XML parser class to use when reading the No

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 54 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 54 of 72

contents of a cell in this column.

This is a mandatory attribute for cells that contain

non-standard complex types. If not specified the

contents of the cell can only be read as a String

data type.

Internally A-DAS™ does not use this information

to handle complex types; this is strictly an

import/export instruction.

name The name of the column, if the full, display name

contains reserved or “unwise” URI characters.

No

highlights Deprecated: Base64 encoded display rules for

colour highlighting the table’s cells. The format for

the unencoded rules is described in the Appendix

on Proprietary Formats.

Rules are also applied to the appropriate <td> cell

using the standard HTML/CSS style attribute.

These styles should be used in preference to the

non-standard embedded highlights attribute.

No

Sub-Elements

Name Description Required

n/a n/a n/a

This is a mandatory sub-element of all tables that serves the same purpose as the

HTML <TH> element. It defines the metadata for the table’s cells, what are they

called and what type of data do they contain. Common synonyms for the <th>

element are Column or Header, and in Relational Theory they are often referred to as

Relational Attributes.

In A-DAS™ the <th> element is analogous to the concept of the Relational Attribute,

where a single Attribute is defined completely by its Name and its Type. A set of one

or more Attributes defines the header or rules of a Relation and the Tuples that

conform to these rules are the body or rows of the Relation.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 55 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 55 of 72

 <th java.class="java.lang.String"
 id="table62/Customer-Site"
 name="Customer-Site">Customer Site</th>
 <th java.class="java.lang.String"
 id="table62/Contact-Name"
 name="Contact-Name">Contact Name</th>
 <th java.class="java.lang.Integer"
 highlights="PGhpZ2ZGOTkwMCIgd2hlbj0iJ ... pZ2ZGO="
 id="table62/Category">Category</th>
 <th java.class="java.lang.String"
 id="table62/Email">Email</th>
 <th xml.parser="com.example.parser.HTML"
 id="table62/Subnet"
 name="Email-Template">Email Template</th>

Figure 56 Examples of the <TH> element showing the use of various attributes

One consequence of this interpretation is that A-DAS™ considers two header

elements equivalent if both the name and type attributes match.

7.1.6 <tr>

Attributes

Name Description Required

id An identity for the row that is guaranteed unique

within the scope of the enclosing <tbody>.

 It is possible to split this identity and extract the

original row index of the element as it was defined in

the source data set, e.g. using JQuery:

 var index = $(row).attr(id).substring(3);

Note that A-DAS™ table row indices are zero-based.

Yes

Sub-Elements

Name Description Required

<td> A cell element that contains data No

This is a mandatory structural element, analogous to the HTML <TR> element, that

only exists within an enclosing <tbody>. It supports one mandatory identity attribute

and can contain zero, one or more <td> sub-elements.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 56 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 56 of 72

 <tr id="row0">
 <td>Site-0000</td>
 <td>Joy Kimble</td>
 <td>07557444425</td>
 <td>joy.kimble@primatech.com</td>
 ...
 </tr>

Figure 57 Example of a <tr> element, including <td> sub-elements

7.1.7 <td>

Attributes

Name Description Required

columnId An identity for the Column that this cell belongs in.

This offers an alternative mechanism for column

selection, potentially useful when using client-side

JavaScript

For example it is possible to select all the cells in a

column, without knowing the structure of the table in

advance, using JQuery:

 var contacts = $("tr[columnId|=xxx]");

No

style Part of the standard HTML specification for <TD>

elements this attribute support in-line styles. A-

DAS™ supports cell and row highlighting rules in its

Queries and Views. If defined the rules will be

applied to the serialised XML and stored in the style

attribute of the cells.

No

Sub-Elements

Name Description Required

<td> A cell element that contains data No

This is the core data element used in tables, analogous to the HTML <TD> element, it

only exists within an enclosing <tr>. It supports two optional attributes and contains

the data elements of serialized as text. The serialisation is performed according to the

rules defined in the associated Column Header, <th> element, either as a java.class or

as a complex type with an associated xml.parser.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 57 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 57 of 72

 <td>Site-0012</td>
 <td>Joy Kimble</td>

 <td columnId="table62/Telephone">07557444425</td>

 <td style="background-color: #FF7070">joy.kimble@primatech.com</td>

Figure 58 Example <td> elements, illustrating the key attributes

It is possible to support non-standard, complex, data types by using XML serialisation

within the cell. If a cell contains serialised XML data the appropriate column must

contain the instructions for de-serialisation, using the xml.parser attribute.

For details of the serialisation rules refer to the Appendix on Data Types.

7.2 Proprietary Formats

7.2.1 <response>

Attributes

Name Description Required

id The identity of the response, which will be the

unique URI that generated the response.

If the response is an error it will always be the URL

that was requested. If the response is a success the

URL will be the canonical URL of the resource that

generated the response, this may not be the same as

the URL that the client requested.

Yes

status This attribute represents the status of the response.

Strictly speaking it is a redundant element as the

status code will always be part of the HTTP response

return by A-DAS™ however, not all clients will be

fully HTTP compliant and for this reason the status is

appended as a response attribute.

Note that the HTTP response code takes precedence

and the presence of the status attribute is not

guaranteed.

No

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 58 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 58 of 72

success If present this attribute is always set to true. This is

an optional element as the status value should allow

the client to check if the response is an error or not,

however, testing for the presence or absence of this

attribute is more efficient for handling errors.

This attribute cannot be present at the same time as

the error attribute.

No

error If present this attribute is always set to true. This is

an optional element as the status value should allow

the client to check if the response is an error or not,

however, testing for the presence of this attribute is

more efficient for handling errors.

This attribute cannot be present at the same time as

the success attribute.

No

Sub-Elements

Name Description Required

<metadata> Metadata relating to the Response, which may

include one or more <link> elements that reference

other resources and one or more <property>

elements.

No

<data> A container element that wraps the payload of the

response.

No

The <response> element is the default envelope for A-DAS™ service responses. It

is used to wrap both successful service calls and error responses and for this reason is

can be considered a meta or structural element.

It is possible to argue that the <response> element is a redundant envelope

considering that the HTTP response can contain all of the necessary metadata,

however it is an optional element that enables future expansion of the response to

include additional <link> elements, and other metadata. This is in-line with the

RESTful principle of Hypermedia, which requires that a Service response should

enable state in stateless client-service interactions by providing links and options for

the next state transition.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 59 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 59 of 72

 <?xml-stylesheet type="text/xsl" href="/file/response.xsl"?>
 <response status="SUCCESS_OK"
 id="http://sandbox.anaeko.com:7007/query/1863"
 success="true">

 <metadata />
 <data xml.parser="com.anaeko.utils.data.xml.ArrayTableReader">
 <table id="2323">
 <thead>
 ...
 </thead>
 <tbody>
 ...
 </tbody>
 </table>
 </data>
 </response>

 <?xml-stylesheet type="text/xsl" href="/file/response.xsl"?>
 <response status="CLIENT_BAD_REQUEST"
 id="http://sandbox.anaeko.com:7007/query"
 error="true">

 <data java.class="java.lang.String">
 Query is invalid, Content-Type: null is NOT supported
 </data>

 </response>

Figure 59 Example <response> envelopes, with a error/data payload

The role of document links in the interaction between the service and the client is

enshrined in the, rather oblique, statement often quoted from Roy Fielding’s Theses

on REST:

“Hypermedia as the engine of application state”.

Roy Fielding - Representational State Transfer (Chapter 5)

The role of the A-DAS™ <response> element is analogous to the root <HTML> tag

where the <metadata> and <data> elements assumes the role of the HTML

<HEAD>and <BODY> elements respectively. If we follow the microformat principles

we might expect A-DAS™ to reuse the HTML tags rather than invent a proprietary

XML format, however, an A-DAS™ Response is not an HTML document. The

HTTP Content-Type sent with all A-DAS™ responses indicates the MIME type of

the response as application/xml, and this MIME type should not in general be

treated as HTML, although in the case of an A-DAS™ response this is a valid

fallback option. A typical <response>, as illustrated in Figure 59, will include a

suitable XSL header for transforming the data. This header will reference an XSL

transformation that has been tailored for the client and will enable an XSLT capable

client to render the response for display.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 60 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 60 of 72

Note that the <response> element is defined as an optional element and clients

should not rely on its presence, or by association the presence of a <metadata> or

<data> element.

7.2.2 <data>

Attributes

Name Description Required

java.class A java class that sets boundaries on the type of data

that can be contained in the <data> element. As all

data will be serialised to text this type indicates how

the text should be converted back into its original

type.

The rules for text serialisation are defined elsewhere.

Mappings between java types and other systems are

already well documented for numerous programming

and database systems*. For this reason it is

unnecessary and counter productive to create a new

A-DAS™ specific set of types or to adopt an

arbitrary 3rd party type system such as defined by

XML Schema.

*For example, here are references to mappings from Java types

to: SQL, XML Schema, SOAP and C/C++

No

xml.parser An XML parser class to use when reading the

contents of the <data> element.

This is a mandatory attribute for <data> elements

that contain non-standard complex types. If not

specified the contents of the <data> element can

only be read as a String data type. Internally A-

DAS™ does not use this information to handle

complex types; this is strictly an import/export

instruction.

No

Sub-Elements

Name Description Required

<table> The data element can contain any parsable sub-

elements, depending on the xml.parser declaration.

However, the most common sub-element is the

<table>, see Section 7.1.2 for details.

No

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 61 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 61 of 72

The <data> element is a container for arbitrary text or XML content. The actual

content is determined by the declared xml.parser or java.class attributes. In

practice the most likely content of a <data> element is either a <table> or a textual

message from the service, usually an error message.

 <data java.class="java.lang.String">

 Unknown resource @ /rubbish

 </data>

 <data xml.parser="com.anaeko.utils.data.xml.ArrayTableReader">

 <table id="2323">

 <thead>

 ...

 </thead>

 <tbody>

 ...

 </tbody>

 </table>

 </data>

Figure 60 Example <data> elements showing an error response

The examples in Figure 60 show the two most typical responses; an error message and

a <table> data set. The former is marked with the attribute java.class while the

latter includes the xml.parser attribute. Both of these attributes enable the client to

process the <data> payload when the element is enclosed in a larger Hypermedia

document.

7.2.3 <metadata>

Attributes

Name Description Required

name The name of the item of metadata, which is also the

last segment of the Relative URI.

Yes

base_uri The root URI of this metadata, typically this is the

URL of the Metadata Catalogue to which this

metadata belongs.

Yes

relative_uri The relative URL of the metadata, with respect to the

base_uri. This will be the same as the name attribute

for metadata that is directly related to the base_uri.

Yes

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 62 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 62 of 72

xml.parser A specific xml parser to use when the metadata entity

can be treated as more than generic metadata. In

general this is discouraged as specific types of

Metadata cannot normally be instantiated by external

A-DAS™ services.

No

Sub-Elements

Name Description Required

<properties> A container element that encloses a collection of

<property> elements that define the scalar

properties of this metadata entity.

No

<relatesTo> A container element that encloses a collection of

<link> elements that relate this item metadata to

other metadata entities.

No

For an A-DAS™ service the <metadata> element is a fundamental Hypermedia

Resource. It is central to the identification, navigation and automatic processing of the

dynamic data resources that enable the inter-node cooperation that is essential in an

A-DAS™ Data Federation.

Due to the dynamic nature of the cooperating services that make up A-DAS™ it is not

possible to know in advance, at any one time, what data is available and what form it

takes. The <metadata> element is a self-describing Hypermedia resource that

enables automatic discovery and processing through the collection of <link>

elements that relate one metadata entity to another and the scalar <property>

elements that describe the nature of the metadata.

 <metadata xml.parser="com.anaeko.utils.metadata.xml.in.GenericMetadataReader"
 name="sent"
 base_uri="http://sandbox.anaeko.com:8001/email"
 relative_uri="sent">

 <properties>
 <property java.class="java.lang.Integer" name="excel.sheet" value="0" />
 <property java.class="java.lang.String" name="title" value="Email Log" />
 <property java.class="java.lang.String" name="qname" value="sent" />
 <property java.class="java.lang.String" name="description" value="..." />
 <property java.class="java.lang.String" name="name" value="sent" />
 <property java.class="java.lang.Integer" name="cardinality" value="22299" />
 <property java.class="java.lang.Boolean" name="queryable" value="true" />
 </properties>

 <relatesTo>
 <link name="From" href="/email/sent/From" rel="hasChild" rev="childOf"/>
 <link name="Id" href="/email/sent/Id" rel="hasChild" rev="childOf"/>
 <link name="To" href="/email/sent/To" rel="hasChild" rev="childOf"/>
 <link name="email" href="/email" rel="indexedBy" rev="indexes"/>
 </relatesTo>
 </metadata>

Figure 61 Example <metadata> element showing a collection of Properties and Links

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 63 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 63 of 72

The genesis of the A-DAS™ <metadata> Hypermedia is the Resource Description

Framework (RDF), which is a general purpose modelling system for describing

entities and the relationships between them. Like RDF A-DAS™ metadata is an

abstract modelling framework that can, but does not have to, be expressed in XML

format. Unlike RDF the A-DAS™ metadata system has a targeted, specific purpose

and platform. A-DAS™ metadata is designed to provide a simple unified modelling

construct that is fully RESTful, both in concept and in execution, with addressable

entities, references and Hypermedia representations.

7.2.4 <properties>

Attributes

Name Description Required

n/a n/a N/a

Sub-Elements

Name Description Required

<property> Zero, one or more <property> elements may be

sub-elements of a <properties> collection.

No

The properties element is a structural element the sole purpose of which is to enclose,

or group, a collection of <property> elements. It does not have any attributes and

can contain only <property> elements, as illustrated in Figure 62.

A <properties> element can be returned as the root of an A-DAS™ response or

enclosed in a <data> element, itself enclosed in a root <response> element or as

part of a <metadata> resource.

 <properties>

 <property java.class="java.lang.Integer" name="index" value="3" />

 <property java.class="java.lang.String" name="qname" value="SLA Category" />

 <property java.class="java.lang.String" name="name" value="category" />

 <property java.class="java.lang.Boolean">

 <name>queryable</name>

 <value>true</value>

 </property>

 <property xml.parser="com.anaeko.utils.data.ArrayTable">

 <name>value-map</name>

 <value>

 <table id="map1001”>

 <thead>

 <th java.class="java.lang.String" id="map1001/key" >key</th>

 <th java.class="java.lang.Integer" id="map1001/value">value</th>

 </thead>

 <tbody>

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 64 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 64 of 72

 <tr>

 <td>Category 1</th>

 <td>1</th>

 </tr>

 <tr>

 <td>Category 2</th>

 <td>2</th>

 </tr>

 <tr>

 <td>Category 3</th>

 <td>3</th>

 </tr>

 </tbody>

 </table>

 </value>

 </property>

 </properties>

Figure 62 Example <properties> collection, showing the two supported formats for

<property> sub-elements

Note that the properties contained in a <properties> collection do not have to have

values that are simple types, such as String or Integer, but can also be complex types –

although this is more unusual.

7.2.5 <relatesTo>

Attributes

Name Description Required

n/a n/a N/a

Sub-Elements

Name Description Required

<link> Zero, one or more <link> elements. No

The <relatesTo> element is a structural element the sole purpose of which is to

enclose, or group, a collection of <link> elements. It does not have any attributes

and can contain only <link> elements. It is possible, depending on the nature of the

request, for A-DAS™ to return a <relatesTo> element as the root of a response,

enclosed in a <data> element, itself enclosed in a root <response> element or as

part of a <metadata> resource.

Note that the <relatesTo> element can contain multiple <link> elements that

reference the same resource. In Figure 63 the /email/sent/From resource is linked

as both a related “child” and as a “parameter”. This is typical of A-DAS™ metadata

relationships where the structural connection between data entities is represented as a

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 65 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 65 of 72

“parent-child” relationship. Similarly the hasParameter link indicates that A-

DAS™ supports the use of the linked entity as a filter when querying.

 <relatesTo>
 <link name="From" href="/email/sent/From" rel="hasChild" rev="childOf"/>
 <link name="To" href="/email/sent/To" rel="hasChild" rev="childOf"/>
 <link name="From" href="/email/sent/From" rel="hasParameter" />
 <link name="email" href="/email" rel="indexedBy" rev="indexes"/>
 </relatesTo>

Figure 63 Example <relatesTo> collection

7.2.6 <property>

Attributes

Name Description Required

name The name of the property is a required attribute if a

<name> sub-element has not been specified.

No

value The value for the property, serialised as text. Note

that XML content is not allowed in attributes, even if

it is escaped. This attribute and the <value> sub-

element are mutually exclusive.

No

java.class A java class that sets boundaries on the type of data

that can be contained in the property value attribute

or the <value> element. As all values set in

properties will be serialised to text this type indicates

how the text should be converted back into its

original type.

The rules for text serialisation are defined elsewhere.

Mappings between java types and other systems are

already well documented for numerous programming

and database systems*. For this reason it is

unnecessary and counter productive to create a new

A-DAS™ specific set of types or to adopt an

arbitrary 3rd party type system such as defined by

XML Schema.

*For example, here are references to mappings from Java types

to: SQL, XML Schema, SOAP and C/C++

No

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 66 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 66 of 72

xml.parser An XML parser class to use when reading the

contents of the <value> element enclosed by this

property.

This is a mandatory attribute for properties that

contain values with non-standard complex types. If

not specified the contents of the <value> element

can only be read as a String data type. Internally A-

DAS™ does not use this information to handle

complex types; this is strictly an import/export

instruction.

No

Sub-Elements

Name Description Required

<name> A single instance of this element is allowed if a name

attribute has not been specified.

No

<value> A single instance of this element is allowed if a value

attribute has not been specified.

No

The <property> element is a generic device for encapsulating name-value-pairs, these

may be parameters of a Request, scalar values associated with an item of metadata, a

statistical value indicating the performance of an A-DAS™ service or a configuration

option of a Data View.

The name attribute is a text value, typically but not necessarily unique in the context

of a given Request/Response. The value can be a primitive type supported by A-

DAS™, serialised as a String value, or it can be a complex type that has support for

XML serialisation. Which of these two options is employed specific to the individual

<property> element and can be inferred by the presence or absence of the

xml.parser attribute.

 <property java.class="java.lang.Long">
 <name>service.timestamp</name>
 <value>1267118746662</value>
 </property>

 <property java.class="java.lang.Long"
 name="service.timestamp"
 value="1267118746662"
 />

Figure 64 The same <property> in the two supported XML representations

If neither the xml.parser nor the java.class attributes are set in a given property

the value will be treated as a String value, including line-breaks. If a type or XML

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 67 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 67 of 72

attribute is defined for a property but the value fails to parse as the specified type the

XML is considered invalid and will be rejected.

 <property xml.parser="com.anaeko.utils.xml.PropertyReader">

 <name>an embedded property</name>

 <value>

 <property java.class="java.util.Date">

 <name>timestamp</name>

 <value>2010-01-11 12:22:31.231</value>

 </property>

 </value>

 </property>

Figure 65 <property> values supported complex types using embedded XML values

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 68 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 68 of 72

8 Appendix C: Glossary

8.1.1 General Terms

These are terms that have internationally-recognised definitions.

Term Description

(HTTP) GET
The GET method means retrieve whatever information (in

the form of an entity) is identified by the Request-URI. The

Media Type is dependant on the entity being retrieved, the

transformation capabilities of the service and the clients

preferred media type.

See: rfc2616

This is the most used and most intuitive HTTP Method.

However, it should be noted that there are many subtleties

to the semantics of a GET request, which are detailed in the

RFC.

(HTTP) PUT
The PUT method requests that the enclosed entity be stored

under the supplied Request-URI. If the Request-URI refers

to an already existing resource, the enclosed entity should

be considered as a modified version of the one residing on

the origin server. If the Request-URI does not point to an

existing resource, and that URI is capable of being defined

as a new resource.

See: rfc2616

The semantics of the PUT method are very specific and

quite restrictive. It is worth noting that an equivalent POST

readily replaces many of the operations that PUT can

perform. However, a PUT request is guaranteed to be

Idempotent, where a POST request is not.

A-DAS™ provides limited support for PUT requests, most

notably when creating new Views.

(HTTP) POST
The POST method is used to request that the origin server

accept the entity enclosed in the request as a new

subordinate of the resource identified by the Request-URI.

The actual function performed by the POST method is

determined by the server and is usually dependent on the

Request-URI. The posted entity is subordinate to that URI

in the same way that a file is subordinate to a directory

containing it.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 69 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 69 of 72

See: rfc2616

A-DAS™ treats a POST request as a submission to create a

new resource or to alter an existing one. It is a method for

editing or annotating service resources, where this is

allowed.

(HTTP) DELETE
The DELETE method requests that the service delete the

resource identified by the Request-URI. The client cannot

be guaranteed that the operation has been carried out, even

if the status code returned from the origin server indicates

that the action has been completed successfully.

See: rfc2616

(HTTP) HEAD
The HEAD method is identical to GET except that the

server must not return a message-body in the response.

See: rfc2616

(HTTP) OPTION The OPTIONS method represents a request for information

about the communication options available.

See: rfc2616

Microformat An existing and well established Resource format, typically

but not exclusively in XML, that can be repurposed for

general use. A microformat is specific, self-contained,

subset of a large specification that when taken in isolation

still maintains its context and meaning.

For example, the HTML <TABLE> element is both an

efficient and an effective XML data format for storing and

sharing tabular data, as long as strict XML correctness is

observed. To create an alternative XML format, with out

very clear and specialized requirements, would be a waste

of effort.

For further information, examples and discussion visit:

http://microformats.org/

REST / RESTful A descriptive term for a service that follows the principles

of self-discovery, decoupling and interoperability enshrined

in Roy Fielding’s Theses on the architectural style that

drives the scalability of the Web. The key characteristics of

a REST, or RESTful, Service can be summarized as:

4. Identification of resources

5. Manipulation of resources through representations

6. Self-descriptive messages

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 70 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 70 of 72

7. Hypermedia as the engine of application state.

In practice a RESTful Web Service will:

8. Manage and serve Resources. It will not provide

Process Oriented services

9. Every Resource must have an Identity which in the

means that every Resource will have at least one

unique URL

10. Resources should be linked together, even if the

option is just to go back to the previous Resource

11. Provide a Uniform Interface to operate on the

Service’s Resources, at a minimum HTTP GET and

POST but preferably PUT, DELETE, HEAD and

OPTION for full HTTP compliance

12. Provide alternative/multiple representations of

Resources to suit the Client by fully supporting the

HTTP Accept header and Content-Type MIMEs

13. Support caching and intermediaries by processing

Client requests statelessly

Hypermedia A general term used to describe data or content that

contains within itself links to other data/content. It is an

extension of Hypertext applied to arbitrary media, such as

audio or video.

8.1.2 System Specific Definitions

These are terms that have been defined for the purpose of clarifying the requirements.

They may have different meanings outside the scope of the project and may be

referred to differently in the user interface and documentation, but the definitions

provided here shall be used throughout the project scope.

Term Description

URI In general the URIs referred to in this document can be

assumed to be URLs as A-DAS™ does not support URIs

that cannot be addressed or accessed in some meaningful

way.

See rfc3986

URL Although not normally the case A-DAS™ URLs are

interchangeable with URIs (see above)

See rfc3986

Metadata This term is used in its strict sense, meaning “Data about

Data” but it is also used when referring to data entities in

the abstract. For example there are almost 30million

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 71 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 71 of 72

addresses in the UK but the Address as an entity that

defines the form that each of these 30million addresses take

is considered to be Metadata. In programming terms there

are parallels with this use of Metadata and the Object

Oriented concept of a Class.

Service Context Metadata related to an A-DAS™ service configuration, for

example the service’s name, host and port.

Data View / View A particular view of one or more data sets, often combined,

filtered and transformed for a particular User, client or

purpose. An A-DAS™ View is a cached query that has

been assigned a unique, reusable URI. A-DAS™ View

URLs can be shared, embedded and used in any HTTP

capable application.

Media Type A synonym for MIME type. A Media Type may define

more that just the format of the data it may also include

additional encoding and contextual information. For

example, text based Media Types should include the

encoding information, in MIME format: text/html;
charset=UTF-8

Property A property is a scalar value that has been assigned a name.

It is often referred to as a name-value-pair. The value of a

property may be a URL but this does not mean it is a Link

to a Resource, it merely represents the String value of

URL.

Link / Reference /

Relationship

Interchangeable terms for a reference that relates one

resource to another. This is equivalent to an RDF Triple or

a Binary Predicate, where it is asserted to be true that a

Subject has some Relationship to an Object. In A-DAS™

all Subjects and Objects are addressable through URLs

with the consequence that any relationship between two

resources is also a URL/HTML Link between them.

The HTML specification provides for an equivalent

concept, the Document Relationship, using the <LINK>

construct.

Data Source An original, usually unique, source of data that may or may

not have a programming, query or service interface. For

example, a Relational Database or an Excel spreadsheet.

Data Model / Metadata

Catalogue

The use of the terms Data Model and Metadata Catalogue

are interchangeable. An A-DAS™ Data Service will

provide a representation of the available data, the Data

Model, in the form of a Metadata Catalogue.

Document ID: A-DAS-IS-001

Version: 0.2

A-DAS Interface Specification Page: 72 of 72

Anaeko Limited – Proprietary and Confidential

A-DAS-IS-001 Version 0.2 Page 72 of 72

Data Service A network enabled, usually supporting the HTTP

application protocol, service that serves data in response to

client queries.

(Data Source) Adapter A pluggable A-DAS™ module that provides a bridge

between an underlying Data Source and the A-DAS™ Data

Service interface. An Adapter translates requests to and

replies from a Data Source enabling a Data Service to be

created. An Adapter is also responsible for the Metadata

model that describes the available data.

Data Federation A collection of data services that can be centrally or

individually managed and can cooperate, exchanging data

and delegating requests peer-to-peer, in such a way as to

present a single unified Data Service.

A-DAS™ Hub (Service) A central management service in a Data Federation. This

service does not provide access to its own Data Source but

as a member of the Federation it can serve data from one or

more of the other Data Services.

A-DAS™ Node (Service) This is Data Service in a Data Federation that takes part in

the peer-to-peer processing of client requests. It typically

provides access to one or more Data Source, although this

is not a requirement.

